Oat phytochrome A mRNA degradation appears to occur via two distinct pathways.

نویسندگان

  • D C Higgs
  • J T Colbert
چکیده

We have identified possible mechanisms for the degradation of oat phytochrome A (PHYA) mRNA. The majority of PHYA mRNA molecules appeared to be degraded prior to removal of the poly(A) tail, a pathway that differs from that reported for the degradation of other eukaryotic mRNAs. Polyadenylated PHYA mRNA contained a pattern of putative degradation products that is consistent with a 5'-->3' exoribonuclease, although the participation of a stochastic endoribonuclease cannot be excluded. The poly(A) tail of PHYA mRNA was heterogeneous in size and ranged from approximately 14 to 220 nucleotides. Early PHYA mRNA degradation events did not appear to involve site-specific endoribonucleases. Approximately 25% of the apparently full-length PHYA mRNA was poly(A) deficient. Oat H4 histone, beta-tubulin, and actin mRNA populations had lower amounts of apparently full-length mRNAs that were poly(A) deficient. Degradation of the poly(A)-deficient PHYA mRNA, a second pathway, appeared to be initiated by a 3'-->5' exoribonucleolytic removal of the poly(A) tail followed by both 5'-->3' and 3'-->5' exoribonuclease activities. Polysome-associated RNA contained putative PHYA mRNA degradation products and was a mixture of polyadenylated and deadenylated PHYA messages, suggesting that the two distinct degradation pathways are polysome associated.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Red Light-lndependent lnstability of Oat Phytochrome mRNA in Vivo

Phytochrome A (phyA) mRNA abundance decreased rapidly in total RNA samples isolated from 4-day-old etiolated oat seedlings following a red light pulse. Putative in vivo phyA mRNA degradation products were detectable both before and after red light treatment. Cordycepin-treated coleoptiles were unable to accumulate the chlorophyll alb-binding protein mRNA in response to red light, indicating tha...

متن کامل

Red Light-Independent Instability of Oat Phytochrome mRNA in Vivo.

Phytochrome A (phyA) mRNA abundance decreased rapidly in total RNA samples isolated from 4-day-old etiolated oat seedlings following a red light pulse. Putative in vivo phyA mRNA degradation products were detectable both before and after red light treatment. Cordycepin-treated coleoptiles were unable to accumulate the chlorophyll a/b-binding protein mRNA in response to red light, indicating tha...

متن کامل

Evidence for bound phytochrome in oat seedlings.

Phytochrome is consistently observed in pellets centrifuged from homogenates of etiolated, 5-day-old oat seedlings. The majority of pigment associated with the pellet cannot be removed by buffer washes, nor can appreciable quantities of additional phytochrome be adsorbed onto the sedimented material. Over 70% of phytochrome in the pellet is released by 1% Triton X-100.Storage at 0 degrees , irr...

متن کامل

Oat Phytochrome Is Biologically Active in Transgenic Tomatoes.

To determine the functional homology between phytochromes from evolutionarily divergent species, we used the cauliflower mosaic virus 35S promoter to express a monocot (oat) phytochrome cDNA in a dicot plant (tomato). Immunoblot analysis shows that more than 50% of the transgenic tomato plants synthesize the full-length oat phytochrome polypeptide. Moreover, leaves of light-grown transgenic pla...

متن کامل

Partial Purification and Characterization of a Phytochrome-degrading Neutral Protease from Etiolated Oat Shoots.

A factor catalyzing the in vitro degradation of oat phytochrome in crude extracts has been shown to be a proteolytic enzyme. The enzyme, an endoprotease, has been purified about 600-fold from dark-grown oat shoots by chromatography on ion exchange and molecular seive gels. The pH-activity curve is broad, with a maximum around pH 6.4. The enzyme is apparently dependent on the presence of reduced...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Plant cell

دوره 6 7  شماره 

صفحات  -

تاریخ انتشار 1994